Engineering a Conformationally Switchable Artificial Metalloprotein

20 September 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Most naturally occurring metalloenzymes are gated by rate-limiting conformational changes and there exists a critical inter-play between macroscopic structural rearrangements of the protein, and subatomic changes affecting the electronic struc-ture of embedded metallocofactors. Despite this connection, most artificial metalloproteins (ArMs) are prepared in structur-ally rigid protein hosts. To better model the natural mechanisms of metalloprotein reactivity, we have developed conforma-tionally switchable ArMs (swArMs) that undergo a large-scale structural rearrangement upon allosteric effector binding. The swArMs reported here contain a Co(dmgH)2(X) cofactor (dmgH = dimethylglyoxime, X = N3–, H3C–, iPr–). We used UV-vis absorbance and energy-dispersive X-ray fluorescence spectroscopies, along with protein assays, and mass spectrometry to show that these metallocofactors are installed site-specifically and stoichiometrically via direct Co‒S cysteine ligation within the E. coli glutamine binding protein (GlnBP). Structural characterization by single-crystal X-ray diffraction (2.99 Å resolu-tion) unveils the precise positioning and microenvironment of the metallocofactor within the protein fold. Fluorescence and circular dichroism spectroscopies, along with isothermal titration calorimetry reveal that allosteric Gln binding drives a large-scale protein conformational change. In swArMs containing a Co(dmgH)2(CH3) cofactor, we show that the protein stabilizes the otherwise labile Co‒S bond relative to the free complex. Kinetics studies performed as a function of temperature and pH reveal that the protein conformational change accelerates this bond dissociation in a pH-dependent fashion. We present swArMs as a robust platform for investigating the interplay between allostery and metallocofactor regulation.

Keywords

Artifical Metalloprotein
Protein Design
Cobalamin
Cobaloxime
Protein Dynamics

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Materials and methods for molecular biology, XRD parameters, 1H-NMR characterization of metal complexes, UV-vis abs spectra and characterization of organometallic swArM bioconjugates, ex-emplary ITC data, CD and fluorescence spectra, kinetics data and control experiments, and Eyring analyses.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.