Comparing corrosion control treatments for drinking water using a robust Bayesian generalized additive model

19 September 2022, Version 5
This content is a preprint and has not undergone peer review at the time of posting.


Pipe loop studies are used to evaluate corrosion control treatment, and updated regulatory guidance will ensure that they remain important for water quality management. But the data they generate are difficult to analyze: non-linear time-trends, non-detects, extreme values, and autocorrelation are common attributes that make popular methods, such as the t- or rank-sum tests, poor descriptive models. Here, we propose a model for pipe loop data that accommodates many of these difficult-to-model attributes: a robust Bayesian generalized additive model with continuous-time autoregressive errors. Our approach facilitates corrosion control treatment comparisons without the need for imputing non-detects or special handling of outliers. It is well-suited to describing nonlinear trends without overfitting, and it accounts for the reduced information content in autocorrelated time series. We demonstrate it using a four-year pipe loop study, with multiple pipe configurations and orthophosphate dosing protocols, finding that an initially high dose of orthophosphate (2 mg P L-1) that is subsequently lowered (0.75 mg P L-1) can yield lower lead release than an intermediate dose (1 mg P L-1) in the long term. Water utilities face difficult tradeoffs in applying orthophosphate for corrosion control, and better models of pipe loop data can help inform the decision-making process.


drinking water

Supplementary weblinks


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.