Role and Dynamics of Transition Metal Carbides in Methane Coupling

13 September 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Transition metal carbides have numerous applications and are known to excel in terms of hardness, thermal stability and conductivity. In particular, the Pt-like behavior of Mo and W carbides has led to a popularization of metal carbides in catalysis, ranging from electrochemically-driven reactions to thermal methane coupling. Herein, we show the dynamics of Mo and W carbides and the active participation of carbidic carbon in the formation of C2 products during methane coupling. A detailed mechanistic study reveals that the catalyst performance of these metal carbides can be traced back to its carbon diffusivity and exchange capability upon interaction with gas phase carbon (methane). A stable C2 selectivity over time on stream for Mo carbide (Mo2C) can be rationalized by fast carbon diffusion dynamics, while W carbide (WC) shows loss of selectivity due to slow diffusion leading to surface carbon depletion. This finding showcases that the bulk carbidic carbon of the catalyst plays a crucial role and that the metal carbide is not only responsible for methyl radical formation. Overall, this study supports the presence of a carbon equivalent to the Mars-Van Krevelen type mechanism for non-oxidative coupling of methane, thus introducing guiding principles to design and develop associated catalysts.

Keywords

Methane Coupling
Metal Carbide
Carbon Diffusion
Metadynamics
Heterogeneous Catalysis
Mars-Van Krevelen

Supplementary materials

Title
Description
Actions
Title
Supplementary Information Role and Dynamics of Transition Metal Carbides in Methane Coupling
Description
Detailed description of synthesis and methods.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.