Reaction Environment Impacts Charge Transfer But Not Chemical Reaction Steps in Hydrogen Evolution Catalysis

09 September 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Heterogeneous electrocatalysis involves elementary chemical and charge transfer reaction steps, with the kinetics of each step contributing to the overpotential requirement at a given reaction rate. Typical experiments report on the aggregate rate-overpotential profile with no information about the relative contributions from charge transfer and chemical steps. For the hydrogen evolution reaction (HER), the applied overpotential can be partitioned into a charge transfer overpotential, the overpotential necessary to drive proton-coupled electron transfer (PCET) to and from the surface, and a chemical overpotential, corresponding to a change in surface H activity. Reaction conditions can affect either or both the charge transfer and chemical components. Herein, we employ a Pd membrane double cell to spatially separate the charge transfer and chemical reactions steps of HER catalysis, enabling quantification of the chemical and charge transfer overpotential. We further analyze how each depend on pH, and the introduction of HER poisons and promoters. We find that for a given rate of H2 release, the chemical overpotential is constant across diverse reaction environments whereas the charge transfer overpotential is strongly sensitive to reaction conditions. These findings suggest that reaction condition dependent-HER efficiencies are driven predominantly by changes to the kinetics of charge transfer rather than the chemical reactivity of surface H.

Keywords

Heterogeneous Catalysis
Charge Transfer
Overpotential
Electrocatalysis
Hydrogen
Palladium

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
Supplementary information for the associated manuscript
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.