Synthetic control of intrinsic defect formation in metal oxide nanocrystals using dissociated spectator metal salts

06 September 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Crystallographic defects are essential to the functional properties of semiconductors, controlling everything from conductivity to optical properties and catalytic activity. In nanocrystals, too, defect engineering with extrinsic dopants has been fruitful. Although intrinsic defects like vacancies can be equally useful, synthetic strategies for controlling their generation are comparatively underdeveloped. Here we show that intrinsic defect concentration can be tuned during synthesis of colloidal metal oxide nanocrystals by the addition of metal salts. Although not incorporated in the nanocrystals, the metal salts dissociate at high temperature, promoting the dissociation of carboxylate ligands from metal precursors, leading to introduction of oxygen vacancies. For example, the concentration of oxygen vacancies can be controlled up to 9% in indium oxide nanocrystals. This method is broadly applicable as we demonstrate by generating intrinsic defects in metal oxide nanocrystals of various morphologies and compositions.

Keywords

Defects
Semiconductor
nanocrystals
Oxygen vacancies

Supplementary materials

Title
Description
Actions
Title
Synthetic control of intrinsic defect formation in metal oxide nanocrystals using dissociated spectator metal salts
Description
Crystallographic defects are essential to the functional properties of semiconductors, controlling everything from conductivity to optical properties and catalytic activity. In nanocrystals, too, defect engineering with extrinsic dopants has been fruitful. Although intrinsic defects like vacancies can be equally useful, synthetic strategies for controlling their generation are comparatively underdeveloped. Here we show that intrinsic defect concentration can be tuned during synthesis of colloidal metal oxide nanocrystals by the addition of metal salts. Although not incorporated in the nanocrystals, the metal salts dissociate at high temperature, promoting the dissociation of carboxylate ligands from metal precursors, leading to introduction of oxygen vacancies. For example, the concentration of oxygen vacancies can be controlled up to 9% in indium oxide nanocrystals. This method is broadly applicable as we demonstrate by generating intrinsic defects in metal oxide nanocrystals of various morphologies and compositions.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.