Unsupervised pharmaceutical polymorph identification and multicomponent particle mapping of ToF-SIMS data by non-negative matrix factorization

05 September 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Crystal polymorphism of pharmaceutical compounds directly impacts resulting physicochemical characteristics, a critical aspect in active pharmaceutical ingredient (API) production. Tools to characterize and chemically map these polymorphs at the single particle scale remain important to advancing directed manufacture of targeted polymorphs. Here, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was employed for chemically imaging inkjet printed acetaminophen samples. ToF-SIMS generates large datasets of high spatial resolution images. Extracting relevant data and peaks of interest can be laborious for, and biased by, users. Advances in machine learning approaches have introduced many supervised and unsupervised methods for data analysis. In this study, we apply non-negative matrix factorization (NMF) for the unsupervised analysis of ToF-SIMS chemical image data. More specifically, an expanded variant of NMF, NMFk, was employed to determine the dataset’s latent dimensionality. NMFk combines the spectral unmixing of traditional NMF with k-means clustering of the resulting factors and an optimization of the reconstruction and clustering. The method was used to identify the number of polymorph phases – and their representative mass spectra – generated from inkjet printed acetaminophen samples. Amorphous, crystalline form I, and crystalline form II polymorphs were observed. The learned polymorph mass spectra were then used to map the learned polymorphs onto subsequent particle samples of acetaminophen. Finally, NMFk also enabled the decomposition of mixed particle samples (i.e., migraine medicine), learning the number of compounds and their composition. The extracted constituent phase mass spectra – representing single compounds – were searched against mass spectral libraries for identification.


Unsupervised machine learning
Non-negative matrix factorization
Chemical mapping

Supplementary materials

Supporting Information: Unsupervised pharmaceutical polymorph identification and multicomponent particle mapping of ToF-SIMS data by non-negative matrix factorization
Additional experimental method details, data tables, and figures are provided.

Supplementary weblinks


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.