Abstract
Reaction of a hexagonal planar palladium complex with a [PdMg3H3] core with H2 is reversible and leads to the formation of a new [PdMg2H4] tetrahydride species alongside an equivalent of a magnesium hydride co-product [MgH]. While the reversibility of this process prevented isolation and structural characterisation of [PdMg2H4], analogous [PtMg2H4] and [PdZn2H4] complexes could be isolated and characterised through independent syntheses. Computational analysis (DFT, AIM, NCIPlot) of the bonding in a series of heterometallic tetrahydride compounds (Ni-Pt; Mg and Zn) suggests that these complexes are best described as square planar with marginal metal–metal interactions; the strength of which increases as group 10 is descended and increases from Mg to Zn. DFT calculations support a mechanism for H2 activation involving a ligand-assisted oxidative addition to Pd. These findings were exploited to develop a catalytic protocol for H/D exchange into magnesium hydride and zinc hydride bonds.
Supplementary materials
Title
Supporting Information
Description
Experimental and computational procedures, along with associated data.
Actions
Title
Coordinates
Description
Computational Coordinates
Actions
Title
XRD data
Description
cif file
Actions