Stair-Like Narrow Nanographene with Diradicaloid Character at the Topological Interface

02 September 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

π-magnetism of finite-sized nanoribbon occurring on the topological molecular interfaces remains largely unexplored due to limited experimental examples. Herein, we report rational design, solution synthesis and systematical characterization of a novel type of stair-like aza-nanographene (ANG) ANG-a~b with precise N-doping on the interfacial cove-edges. Within the same molecular π-backbone, ANG-a had a closed-shell structure due to the electronic perturbation of cove-edge substitution; while ANG-b hosted a spin-polarized interface state, and impressively its open-shell singlet diradicaloid structure produced a combined optoelectronic, magnetic and physicochemical characteristics. Besides, dicationic ANG-b was also synthesized and characterized as a ground-state diradicaloid, again closely associated with the interfacial spin-polarization in the charged π-system. Our studies might provide insights into future structural engineering of topological open-shell materials with robust yet exotic spin-polarized interface states.

Supplementary materials

Title
Description
Actions
Title
Suppoting Information
Description
The full experimental details, characterization data, and theoretical calculation results
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.