Green synthesis of propylene oxide directly from propane

30 August 2022, Version 2
This content is a preprint and has not undergone peer review at the time of posting.


The chemical industry faces the challenge of bringing emissions of climate-damaging CO2 to zero. However, the synthesis of important intermediates, such as olefins or epoxides, is still associated with the release of large amounts of greenhouse gases. This is due to both a high energy input for many process steps and insufficient selectivity of the underlying catalysed reactions. Surprisingly, we found that the oxidation of propane at elevated temperature over inert materials such as boron nitride and silicon dioxide leads to the formation of significant amounts of propylene oxide in a mixture with propylene, with unexpectedly small amounts of CO2 being formed. Fragile products are usually synthesised on highly specific surfaces, which is associated with strong interactions. We demonstrate that rapid reaction over unspecific interfaces entails im-portant consequences for the synthesis of products prone to overoxidation. Process simulations reveal that the combined synthesis of these two important chemical building blocks is technologically feasible. Our discovery leads the ways towards an environmentally friendly production of propylene oxide and propylene in one step. A complex catalyst development is not necessary.


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.