E-Z Isomerization in Guanidine: Second-order Saddle Dynamics, Non-statisticality, and Time-frequency Analysis

26 August 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Our recent work on the E-Z isomerization reaction of guanidine using ab initio chemical dynamics simulations [Rashmi et al, Regul. Chaotic Dyn. 2021, 26, 119] emphasized the role of second-order saddle (SOS) in the isomerization reaction; however could not unequivocally establish the non-statistical nature of the dynamics followed in the reaction. In the present study, we performed thousands on-the-fly trajectories using forces computed at the MNDO level to investigate the influence of second-order saddle in the E-Z isomerization reaction of guanidine and the role of intramolecular vibrational energy redistribution (IVR) on the reaction dynamics. The simulations reveal that while majority of the trajectories follow the traditional transition state pathways, 15% of the trajectories follow the SOS path. The dynamics was found to be highly non-statistical with the survival probabilities of the reactants showing large deviations from those obtained within the RRKM assumptions. In addition, a detailed analysis of the dynamics using time-dependent frequencies and the frequency ratio spaces reveal the existence of multiple resonance junctions that indicate the existence of regular dynamics and long-lived quasi-periodic trajectories in the phase space associated with non-RRKM behavior.

Keywords

Isomerization dynamics
Wavelet transformation
Principal component analysis
Frequency ratio space

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.