Abstract
The bimolecular reaction between OH− and CH3F is not just a prototypical SN2 process but also has three other product channels. Here, we develop an accurate full-dimensional potential energy surface (PES) based on 191 193 points calculated at the level CCSD(T)-F12a/aug-cc-pVTZ. A detailed dynamics and mechanism analysis were carried out on this PES by using the quasi-classical trajectory approach. It is verified that the trajectories do not follow the minimum energy path (MEP) but directly dissociate to F− and CH3OH. In addition, a new transition state for proton exchange and a new product complex CH2F−‧‧‧H2O for proton abstraction were discovered. The trajectories avoid the transition state or this complex, instead dissociate to H2O and CH2F− directly through the ridge regions of the MEP before the transition state. These non-MEP dynamics become more pronounced at high collision energies. Detailed dynamics simulations provide new insights into the atomic-level mechanisms of the title reaction thanks to the new chemically accurate PES with the aid of the machine learning.