Electrochemical Stability of Thiolate Self-Assembled Monolayers on Au, Pt, and Cu

24 August 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Self-assembled monolayers (SAMs) of thiolates have increasingly been used for modification of metal surfaces in electrochemical applications including selective catalysis (e.g., CO2 reduction, nitrogen reduction) and chemical sensing. Here, the stable electrochemical potential window of thiolate SAMs on Au, Pt, and Cu electrodes is systematically studied for a variety of thiols in aqueous electrolyte systems. For fixed tail-group functionality, the reductive stability of thiolate SAMs is found to follow the trend: Au < Pt < Cu; this can be understood by considering the combined influences of the binding strength of sulfur and competitive adsorption of hydrogen. The oxidative stability of thiolate SAMs is found to follow the order: Cu < Pt < Au, consistent with each surface’s propensity toward surface oxide formation. The stable reductive and oxidative potential limits are both found to vary linearly with pH, except for reduction above pH ~10, which is independent of potential for most thiol compositions. The electrochemical stability across different functionalized thiols is then revealed to depend on many different factors including SAM defects (accessible surface metal atom sites decrease stability), intermolecular interactions (hydrophilic groups reduce the stability), and SAM thickness (stability increases with alkanethiol carbon chain length), as well as factors such as SAM-induced surface reconstruction, and the ability to directly oxidize or reduce the non-sulfur part of the SAM molecule.

Keywords

self assembled monolayer
electrochemical stability
electrocatalysis
oxidation
reduction

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Contains additional methods information and supporting electrochemical measurements referenced in the main text
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.