Quantum chemical sensing using molecular triplet qubits in a flexible metal–organic framework

23 August 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Quantum sensing using molecular qubits is expected to provide excellent sensitivity due to the proximity of the sensor to the target analyte. However, many molecular qubits are used at cryogenic temperatures, and how to make molecular qubits respond to specific analytes remains unclear. Here, we propose a new quantum sensor design in which the coherence time changes in response to a variety of analytes at room temperature. We used the photoexcited triplet, which can be initialized at room temperature, as qubits and introduce them to a metal–organic framework that can flexibly change its pore structure in response to guest adsorption. By changing the local molecular density around the triplet qubits by adsorption of a specific analyte, the mobility of the triplet qubit can be changed, and the coherence time can be made responsive.

Supplementary materials

Title
Description
Actions
Title
Supplementary Information
Description
EPR parameters, absorption spectra, T1 values, TGA curves, guest occupied volume, spin echo decay curves, PXRD patterns, steric parameters, and unit cell parameters.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.