Poly(butylene-succinate)-based blends with enhanced oxygen permeability

22 August 2022, Version 4
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Poly(butylene succinate) (PBS) is a biodegradable polymer produced from renewable raw materials and is widely used in the production of packaging materials. Among important features, oxygen permeability is crucial for “breathing” packaging materials (such as packaging for medical devices sterilized with gaseous ethylene oxide). Recently, poly(butylene succinate-dilinolene succinate) (PBS-DLS) copolymers containing long chains of fatty acids and showing excellent elasticity were synthesized. In this work, bio-based polymer blends of PBS and PBS-DLS copolymer with an aliphatic-aromatic poly(butylene terephthalate-butylene adipate) (PBAT) (Ecoflex) were prepared in order to further improve their oxygen permeability while maintaining mechanical stability. PBS and PBS-DLS copolymer containing 90 wt% of hard segments and 10 wt% of soft segments, respectively, were used for blends preparation with 10 wt% of PBAT. The chemical structure was analyzed using infrared spectroscopy and thermal properties were determined with differential scanning calorimetry. The introduction of PBAT to the blends did not affect their melting temperatures. PBS-based blends were miscible at the molecular level based on single Tg value calculated from Fox equation and uniform fracture surface morphology from scanning electron microscopy (SEM). Importantly, the oxygen permeability of PBS-DLS/PBAT blend was comparable to non-biodegradable high-density polyethylene (HDPE) Tyvek used for medical devices packaging.

Keywords

polyester blends
biodegradable polymers
polybutylene succinate
oxygen permeability

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.