Carbodiimide-fueled assembly of π-conjugated peptides regulated by electrostatic interactions

22 August 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Peptides naturally have stimuli-adaptive structural conformations that are advantageous for endowing synthetic materials with dynamic functionalities. Here, we investigate a carbodiimide-based approach, combined with electrostatic modulation, to instruct π-conjugated peptides to self-assemble and be responsive to thermal disassembly cues upon consumption of the assembly trigger. Quaterthiophene-functionalized peptides are utilized as a model system herein to study the formation of kinetically trapped structures at non-equilibrium states. Peptides were designed to have aspartic acid at the termini to allow intramolecular anhydride formation upon adding carbodiimide, which consequentially reduces the electrostatic repulsion and facilitates assembly. We show that the carbodiimide-fueled assembly and subsequent thermally assisted disassembly can be modulated by the net charge of the peptidic monomers, suggesting an assembly mechanism that can be encoded by sequence design. This carbodiimide-based approach for the assembly of designer π-conjugated systems offers a unique opportunity to develop bioelectronic supramolecular materials with controllable formation of transient structures.

Keywords

peptides
conjugated molecules
assembly
supramolecular chemistry

Supplementary materials

Title
Description
Actions
Title
SI_202208_Yao et al
Description
Synthetic procedures, additional materials characterization, and detailed procedure for molecular simulations.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.