Electrochemical exfoliation of two-dimensional siligene SixGey; material characterization and perspectives for lithium-ion storage

19 August 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Two-dimensional (2D) silicene-germanene alloy - siligene (SixGey), a novel single-phase material has attracted increased attention due to its two-elemental low-buckled composition and unique physics and chemistry. This new 2D material has the potential to address the challenges caused by low electrical conductivity and the environmental instability of corresponding monolayers. Yet, siligene structure was studied in theory, demonstrating the material’s great electrochemical potential for energy storage applications. The synthesis of free-standing siligene remains challenged and therefore hinders the research and application of this material. Herein we pioneer non-aqueous electrochemical exfoliation of a few-layer siligene from Ca1.0Si1.0Ge1.0 Zintl phase precursor. The procedure was conducted in an oxygen-free environment applying 3.8 V potential. The obtained silicene exhibits a high-quality, high uniformity, and excellent crystallinity; the individual flake is within the micrometer lateral size. The 2D SixGey was further explored as an anode material for lithium-ion storage. Two types of anode have been fabricated and integrated into lithium-ion battery cells, namely 1) siligene_graphene oxide sponge, and 2) siligene_multi-walled carbon nanotubes. The as-fabricated batteries both with/without siligene exhibit similar behaviour, however referring to the increase in the electrochemical characteristics of SiGe-integrated batteries by 10%. The corresponding batteries exhibit 1145.0 mAh·g-1 specific capacity at 0.1 A·g-1. The SiGe-integrated batteries demonstrate a very low polarization confirmed by their good stability after 50 working cycles and a decrease in the solid electrolyte interface level that occurs after the first discharge/charge cycle. We anticipate the growing potential of emerging two-component 2D materials and their great promise for energy storage and beyond.

Keywords

silicene
germanene
low-hydrogenated siligene
top-down synthesis
electrochemical exfoliation
lithium-ion storage
lithium-ion battery

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.