Abstract
Aurora kinase A (AURKA) is a well-established target in neuroblastoma (NB) due to its catalytic functions during mitosis and due to stabilisation of the key oncoprotein MYCN. We report a small structure-activity relationship (SAR) study of MK-5108-derived PROTACs against AURKA by exploring different linker lengths and both the 4- and 5-position as thalidomide exit vectors. PROTAC SK2188 induces the most potent AURKA degradation (DC50, 24h < 10 nM, Dmax, 1h 98%, Dmax, 24h, 80%) and significantly outperforms the parent inhibitor MK-5108 in a cell proliferation screen and patient-derived organoids. Treatment of NGP neuroblastoma cells with SK2188 induced concomitant MYCN degradation, high replication stress/DNA damage levels and apoptosis. Furthermore, altering the attachment point of the PEG linker to the 5-position of thalidomide allowed us to identify a potent AURKA degrader with a linker as short as 2 PEG units. With this, our SAR-study provides interesting lead structures for further optimization and validation of AURKA degradation as a potential therapeutic strategy in neuroblastoma.
Supplementary materials
Title
Supporting Information
Description
Chemical procedures, HPLC traces of final compounds, 1H and 13C NMR and HRMS spectra of SK2188, cell confluency curves, immunoblots.
Actions