MASSA Algorithm: automated rational sampling of training and test subsets for QSAR modelling

16 August 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The use of computer-aided drug design has become an essential part of drug development. In this context, QSAR models capable of predicting biological activities, toxicity, and pharmacokinetic properties were widely used to search bioactive molecules in chemical databases for lead compounds. The preparation of dataset used to build these models has a strong influence on the quality of the generated models, and sampling these data requires that the original dataset be divided into training (used for model training) and test sets (used to further evaluate the predictability of the model). This sampling can be done randomly or rationally, but the rational or purposeful division is superior to the random method. In this paper, we present MASSA Algorithm ("Molecular dAta Set SAmpling Algorithm"), an open-source, user-friendly Python tool that can be used to perform automatic sampling of datasets of molecules into training and test sets by exploring the biological, physicochemical, and structural spaces of molecules using Principal Component Analysis, Hierarchical Clustering Analysis, and K-modes clustering. This proposed algorithm is very useful when the variables for QSAR model generation is not available or to construct multiple QSAR models with the same training and test sets. When compared to random sampling, the presented algorithm produces models with lower variability and higher values across multiple replicates for validation metrics. These results were obtained even when the descriptors used in the QSAR/QSPR were different from those used in the separation of training and test sets, indicating that this tool can be used to build models for more than one QSAR/QSPR technique. Finally, the tool also generates useful graphical representations of the distribution that can provide insights into the data.

Keywords

QSAR
Training and test splitting
Sampling
Hierarchical clustering analysis (HCA)
K-modes
Python

Supplementary materials

Title
Description
Actions
Title
Supplementary Material
Description
Similarity maps for the seven datasets and their training-test distributions from MASSA, random, and referential (from the original study) approaches.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.