Molecular Capacitors: Accessible 6- and 8-electron Redox Chemistry from Dimeric “Ti(I)” and “Ti(0)” Synthons Support-ed by Imidazolin-2-Iminato Ligands.

12 August 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Reduction of the diamagnetic Ti(III)/Ti(III) dimer [Cl2Ti(μ-NImDipp)]2 (1) (NImDipp = [1,3-bis(Dipp)imidazolin-2-iminato]-, Dipp = NC6H3-2,6-Pri2) with 4 and 6 equiv of KC8 generates the intramolecularly arene-masked, dinuclear titanium com-pounds [(μ-N-μ-η6-ImDipp)Ti]2 (2) and {[(Et2O)2K](μ-N-μ-η6:η6-ImDipp)Ti}2 (3), respectively, in modest yields. The compounds have been structurally characterized by X-ray crystallographic analysis and inspection of the bond metrics within the η6-coordinated aryl substituent of the bridging imidazolin-2-iminato ligand show perturbation of the aromatic system most consistent with two-electron reduction of the ring. As such, 2 and 3 can be assigned respectively as possessing metal centers in formal Ti(III)/Ti(III) and Ti(II)/Ti(II) oxidation states. Exploration of their redox chemistry reveal the ability to reduce several substrate equivalents. For instance, treatment of 2 with excess C8H8 (COT) forms the novel COT-bridged complex [(ImDippN)(η8-COT)Ti](μ-η2:η3-COT)[Ti(η4-COT)(NImDipp)] (4) that dissociates in THF solutions to give mononuclear (ImDippN)Ti(η8-COT)(THF) (5). Addition of COT to 3 yields heterometallic [(ImDippN)(η4-COT)Ti(μ-η4:η5-COT)K(THF)(μ-η6:η4-COT)Ti(NImDipp)(μ-η4:η4-COT)K(THF)2]n (6). Compounds 2 and 5 are the products of the 4-electron oxidation of 2, while 6 stands as the 8-electron oxidation product of 3. Reduction of organozides was also explored. Low temperature reaction of 2 with 4 equiv of AdN3 gives the terminal and bridged imido complex [(ImDippN)Ti(=NAd)](μ-NAd)2[Ti(NImDipp)(N3Ad)] (7) that undergoes intermolecular C-H activation of toluene at room temperature to afford the amido compound [(ImDippN)Ti(NHAd)](μ-NAd)2[Ti(C6H4Me)(NImDipp)] (8-tol). These complexes are the 6-electron oxidation products of the reaction of 2 with AdN3. Furthermore, treatment of 3 with 4 equiv of AdN3 produces the thermally sta-ble Ti(III)/Ti(III) terminal and bridged imido [K(18-crown-6)(THF)2]{[(ImDippN)Ti(NAd)](μ-NAd)2K[Ti(NImDipp)]} (10). Alto-gether, these reactions firmly establish 2 and 3 as unprecedented Ti(I)/Ti(I) and Ti(0)/Ti(0) synthons with the clear ca-pacity to effect multi-electron reductions ranging from 4 – 8 electrons.


redox chemistry
multi-electron transfer

Supplementary materials

Supporting Information
Supporting Information that includes X-ray structures, NMR data, and other spectroscopic data


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.