High Energy Density Picoliter Zn-Air Batteries for Colloidal Robots and State Machines

11 August 2022, Version 2
This content is a preprint and has not undergone peer review at the time of posting.


The recent interest in microscopic autonomous systems, including microrobots, colloidal state machines and smart dust has created a need for microscale energy storage and harvesting. However, macroscopic materials for energy storage have noted incompatibilities with micro-fabrication techniques, creating significant challenges to realizing microscale energy systems. Herein, we photolithographically pattern a microscale Zn/Pt/SU-8 system to generate the highest energy density microbattery at the picoliter (10^-12 L) scale. The device scavenges ambient or solution dissolved oxygen for a Zn oxidation reaction, achieving an energy density ranging from 760 to 1070 Wh L-1 at scales below 100 μm lateral and 2 μm thickness in size. More than 10,000 devices per wafer can be released into solution as functional colloids with energy stored onboard. Within a volume of only 2 pL each, these microbatteries can deliver open circuit voltages of 1.16 V with total energies ranging from 5.5 ± 0.3 to 7.7 ± 1.0 μJ and a maximum power near 2.7 nW. We demonstrate that such systems can reliably power a micron-sized memristor circuit, providing access to non-volatile memory. We also cycle power to drive the reversible bending of microscale bimorph actuators at 0.05 Hz for mechanical functions of colloidal robots. Additional capabilities such as powering two distinct nanosensor types and a clock circuit are also demonstrated. The high energy density, low volume and simple configuration promise the mass fabrication and adoption of such picoliter Zn-air batteries for micron-scale, colloidal robotics with autonomous functions.


Zn-air battery

Supplementary materials

High Energy Density Picoliter Zn-Air Batteries for Colloidal Robots and State Machines Supplementary Materials
Supplementary figures and tables for the paper


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.