Understanding water transport through graphene-based nanochannels via experimental control of slip length

10 August 2022, Version 3
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The water transport along graphene-based nanochannels has gained significant interest. However, experimental access to the influence of defects and impurities on transport poses a critical knowledge gap. Here, we investigate the water transport of cation intercalated graphene oxide membranes. The cations act as water-attracting impurities on the channel walls. Via water transport experiments, we show that the slip length of the nanochannels decay exponentially with the hydrated diameter of the intercalated cations, confirming that water transport is governed by the interaction between water molecules and the impurities on the channel wall. The exponential decay of slip length approximates non-slip conditions. This offers experimental support for the use of the Hagen-Poiseuille equation in graphene-based nanochannels, which was previously only confirmed by simulations. Our study gives valuable feedback to theoretical predictions of the water transport along graphene-based channels with water-attracting impurities.

Keywords

water transport
diffusion
graphene oxide
membranes
slip length
water flux

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.