Hierarchical porosity of hybrid carbon nanomaterials based on a covalent triazine framework for high-performance capacitive energy storage

09 August 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Covalent triazine frameworks (CTFs) constitute an emerging class of high-performance materials due to their porosity and the possibility of structural control at the molecular or atomic level. However, the use of CTFs as electrodes in supercapacitors is hampered by their low electrical conductivity and a strong stacking effect between adjacent CTFs. Herein, two series of hybrid carbon nano-onion-based CTFs were designed and successfully synthesized using an ionothermal process at 700 °C. The CTF could undergo framework growth in two or four directions, which was related to the presence of a defined number of nitrile groups in the substrate. CTF counterparts without carbon nano-onions were also synthesized as reference materials. The hybrid materials exhibited excellent specific capacitances, with the highest value exceeding 495 F g-1. It should be emphasized that the specific capacitance value for hybrids was 1.5-2 times higher than that for the reference CTFs. In this study, we examined the factors responsible for such a large increase in electrochemical efficiency. This strategy has significantly expanded the scope and application of CTFs as high-performance electrode materials for electrochemical energy storage systems.

Keywords

carbon nanostructure
triazine
hierarchical porosity
high-performance electrode material
supercapacitor
covalent triazine framework
hybrid material

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
NMR and high-resolution mass spectra; surface elemental composition determined by XPS and cumulative pore volume of the materials.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.