Modeling vibronic spectra of linear aggregates in MATLAB

09 August 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Molecular aggregates display a rich array of photophysical properties quite different from the isolated molecules that have applications in photovoltaics and display technology. Hence, understanding their absorption and emission spectra gives clues about packing and coherence properties, essential for energy transport. We attempt to calculate the steady-state spectra of linear aggregates. We approached this problem by following the vibronic excitonic framework discussed by Spano and co-workers [Hestand & Spano, Chem. Rev. 2018, 118, 7069-7163]. The framework allows us to incorporate the influence of nuclear relaxation energy through the one-particle and two-particle states. We also study the effects of local static disorder, finite temperature, and periodic boundary conditions. We implement the calculation of the photoluminescence and absorption spectra in the user-friendly language MATLAB in a manner that allows sequentially increasing the complexity of the model by considering more effects as needed. The calculated spectra have been validated by matching them with spectra produced by Spano et al. Hence, we have implemented a robust code that can model spectra from linear aggregates of any size and orientation, subject to computational limitations. We are currently using these codes to assign the steady state spectra and speculate the morphology of several types of thin films made of donor-acceptor dyes obtained by an experimental collaborator at SSCU; these dyes are being put forward for use for increasing the efficiency of photovoltaic cells through the multi-exciton generation mechanism of singlet fission. The high-level language implementation allows usage without a programming background as long as the theoretical model is understood.


aggregate spectroscopy
vibronic signature
Frenkel-Holstein model
energy transfer


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.