Photo-Chlorination of Linear Alkanes with 2-Position Selectivity Using a Metal-Organic Layer Catalyst

11 August 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Controlling regioselectivity in activating C−H bonds in linear alkanes is challenging, as their multiple secondary C−H bonds have quite similar dissociation energies with no functional groups to differentiate between the bonds. Amidyl radicals generated from N‒halogen amides were reported to activate C−H bonds with an interesting 2-position selectivity. Here, with a possibility to access the amidyl radical photocatalytically, we coupled ligand-to-metal charge transfer (LMCT)-based radical generation and amide functional group on a tailor-designed metal-organic layer (MOL) material. We achieved efficient photo-chlorination of linear alkanes with 2-position selectivity. For example, with n-hexane as the substrate, 2-chloro-n-hexane was obtained with 85% selectivity and a turnover number of 2200 in 8 hours, together with a high apparent quantum yield of ~7% at room temperature. Transient absorption spectroscopy reveals that a FeIV species is involved in the initial photo-driven process that possibly oxidizes the amide center to an amidyl radical.

Keywords

Metal-organic layer
Photocatalysis
Chlorination
C‒H functionalization
Ligand-to-metal charge transfer

Supplementary materials

Title
Description
Actions
Title
Supplementary Materials
Description
Supplementary Experimentals; NMR and GC-MS data; Supplementary Figures
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.