Fe(III)-Catalysis in Flow Enables Bimolecular Proton Transfer as an Alternative to Superelectrophiles in Carbonyl-Olefin Metathesis

03 August 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Catalytic carbonyl-olefin metathesis has emerged as a new strategy for the direct formation of carbon–carbon double bonds. Successful approaches for ring-closing carbonyl-olefin metathesis exist, but limitations remain in accessing systems larger than 5-membered rings. Currently available strategies rely on Lewis acidic superelectrophiles as stronger catalysts, which require precious metal additives for their formation upon chloride abstraction from otherwise environmentally benign metal salts, such as FeCl3. Herein we report the development of a continuous flow reactor that overcomes this challenge and can access 6-membered rings using FeCl3 as the Lewis acid catalyst. The plug-flow reactor design is user friendly, benchtop amenable, and demonstrates up to 200x improved reaction efficiency over batch conditions. Computational investigations reveal that this transformation proceeds through an unprecedented bimolecular stepwise pathway via intermolecular proton transfer. These insights represent a significant advance for catalytic carbonyl–olefin metathesis and are expected to spur future developments in catalyst design and reaction scope.


carbonyl-olefin metathesis
flow chemistry
sustainable catalysis
environmentally benign metal


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.