Abstract
The hydro(solvo)thermal approaches due to their simplicity and relatively low cost have attracted great attention to novel advanced materials processing with controlled particle sizes and well-defined morphologies, including the desirable obtaining of diverse metastable phases. Furthermore, in this case, such advanced materials obtained by this strategy generally have a high crystallinity structure as the main characteristic, which is interesting for a wide range of technological applications of high performance. This critical review presents the recent progress and challenges in conventional and unconventional hydro(solvo)thermal synthesis of novel advanced materials with desirable functionality and outstanding physicochemical properties designed using such methods. Finally, in this perspective, we believe that this detailed knowledge of the effect of processing parameters and as they will affect the prepared materials structure-composition-morphology is a key step to providing new chemical insights for the rational advanced materials design.