Identification of monomethyl branched chain lipids by a combination of liquid chromatography tandem mass spectrometry and charge-switching chemistries

02 August 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

While various mass spectrometric approaches have been applied to lipid analysis, unraveling the extensive structural diversity of lipids remains a significant challenge. Notably, these approaches often fail to differentiate between isomeric lipids - a challenge that is particularly acute for branched-chain fatty acids (FAs) that often share similar (or identical) mass spectra to their straight-chain isomers. Here, we utilize charge-switching strategies that combine ligated magnesium dications with deprotonated fatty acid anions. Subsequent activation of these charge inverted anions yields mass spectra that differentiate anteiso branched- from straight-chain and iso branched-chain FA isomers with the predictable fragmentation enabling de novo assignment of anteiso branch points. Application of these charge-inversion chemistries in both gas- and solution-phase modalities is demonstrated to assign the position of anteiso-methyl branch-points in FAs, and can be extended to de novo assignment of additional branching sites via predictable fragmentation patterns as methyl branching site(s) move closer to the carboxyl carbon. The gas phase approach is shown to be compatible with top-down structure elucidation of complex lipids such as phosphatidylcholines, while integration of solution-phase charge-inversion with reversed phase liquid chromatography enables separation and unambiguous identification of FA structures within isomeric mixtures. Taken together, the presented charge switching MS-based technique, in combination with liquid chromatography enables the structural identification of branched-chain FA without the requirement of authentic methyl branched FA reference standards.

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting Figures
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.