Design, Synthesis, and Lead Optimisation of CHVB Series Analogues as Potent Small Molecule Inhibitors of Chikungunya Virus

27 July 2022, Version 1

Abstract

The worldwide re-emerge of the Chikungunya virus (CHIKV), the high morbidity associated with it, and the lack of an available vaccine or antiviral treatment make the development of a potent CHIKV-inhibitor highly desirable. Therefore, an extensive lead optimisation was performed based on the previously reported CHVB compound 1b and the reported synthesis route was optimised - improving the overall yield in remarkable shorter synthesis and work-up time. 100 CHVB analogues were designed, synthesised, and investigated for their antiviral activity, physiochemistry, and toxicological profile. An extensive structure-activity relationship study (SAR) was performed, which focused mainly on the combination of scaffold changes and revealed the key chemical features for a high anti-CHIKV inhibition. Further, to investigate the druggability of the compound series, a thorough ADMET investigation was carried out: the compounds were screened for their aqueous solubility, lipophilicity, their toxicity in CaCo-2 cells, and possible hERG channel interactions. Additionally, 55 analogues were assessed for their metabolic stability in human liver microsomes (HLMs) which led to a structure-metabolism relationship study (SMR). The compounds showed an excellent safety profile, favourable physicochemical characteristics, and the required metabolic stability. A cross-resistance study confirmed the viral capping machinery (nsP1) to be the viral target of these second-generation CHVB compounds. This study identified five compounds (31b, 31d, 32d, 34, and 35d) as potent, safe, and stable lead compounds for further development as selective CHIKV inhibitors - with 32d as the most promising candidate. Finally, the collected insight led to a successful scaffold hop (64b) for future antiviral research studies.

Keywords

Chikungunya virus
CHVB-series
structure-activity relationship study
ADMET
lead optimization

Supplementary materials

Title
Description
Actions
Title
Supporting Information - Design, Synthesis, and Lead Optimization of CHVB Series Analogues as Potent Small Molecule Inhibitors of Chikungunya Viru
Description
Molecular Docking study, cytotoxic results, synthesis route for the synthesis of 39 (Scheme S1), experimental procedures, and characterisation data for final compounds and intermediates 20a-64b are reported in the Supporting Information.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.