Photoprogrammable Circularly Polarized Phosphorescence Switching of Chiral Helical Polyacetylene Thin Films

10 August 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The developments of pure organic room-temperature phosphorescence (RTP) materials with circularly polarized luminescence (CPL) have significantly facilitated the future integration and systemization of luminescent material in fundamental science and technological applications. Herein, a new type of photoinduced circularly polarized RTP materials was constructed by homogeneously dispersing phosphorescent chiral helical substituted polyacetylenes into a processable poly(methyl methacrylate) (PMMA) matrix. This substituted polyacetylenes play vital roles in the propagation of CPL and present prominently optical characteristics with high absorption and luminescent dissymmetric factors up to 0.029 (gabs) and 0.019 (glum). The oxygen consumption properties of PMMA films under UV light irradiation endowed materials with dynamic chiro-optical functionality, which can leverage of light to precisely control and manipulate the circularly polarized RTP properties with the remarkable advantages of being contactless, wireless and fatigue-resistant. Significantly, the distinct materials with dynamic properties can be used as novel anti-counterfeiting materials involving photoprogrammability.

Keywords

Circularly Polarized Phosphorescence
room temperature phosphorescence

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting Information
Actions
Title
movie S1
Description
movie S1
Actions
Title
movie S2
Description
movie S2
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.