Multiselective gridization achieved by electrophilic C-X activation of dual halogen bonding cooperation

02 August 2022, Version 1

Abstract

Organic science & technology (OST) become the frontier horizon after nanotechnology, information technology as well as biotechnology toward the era of consciousness. Organic nanogridarenes (ONGAs) are becoming robust nanoscaffolds for next-generation multifunctional/intelligent semiconductors with tunable cross-scale features. However, the prerequisite of trans-dimensional & intelligent design is to clarify the gridization rules for the discovery of the powerful molecular gridization protocols. Here, we report an efficient and multiselective Csp2-Csp3 gridization based on dual halogen bonding (X···π and X···S, X = Br, I) self-activated electrophilic substitution of halogenated electron-rich molecular blocks under supersonic conditions. Windmill-type nanogrids of cyclopenta[1,2-b:5,4-b']dithiophene (WG4) were obtained with the maximum path selectivity (96%), nanogrid-size selectivity (67%), site-selectivity (>99%) and moderate diastereoselectivity (WG4-1-6:WG4-2-6:WG4-3-6:WG4-4-6 =1:3.3:5.3:0), superior to the previous Friedel-Crafts gridization. Mechanistic studies have revealed the roles of XBs where the X···S bonding accelerates dehalogenation after electrophilic attack, and the X···π bonding leads to the multiselectivity of WG4. Impressively, C2-symmetric WG4-1-6 (21×21×15 Å) crystallizes into a Fd3̄c space group as the 16th pure organic molecules in CCDC library and hierarchically self-assemble into a complex 3D porous superstructure.

Content

Supplementary materials

Multiselective gridization achieved by electrophilic C-X activation of dual halogen bonding cooperation
Supplementary Methods Supplementary Note 1. Gridization development. Supplementary Note 2. Structural characterization of WG4 Supplementary Note 3. Mechanistic investigations Supplementary Note 4. Hierarchical self-assembly Supplementary Note 5. NMR spectra for all substrates and products Supplementary References  

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.