Nanoporous Au formation on Au substrates via high voltage electrolysis

04 August 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Nanoporous Au (NPG) films often show distinctly different properties than bare Au electrodes, which make them suitable for various applications in (electro)catalysis or (bio)sensing. A great deal of effort has gone into finding suitable preparation techniques that can be used to target structural properties, such as the pore size or the surface-to-volume ratio. Many of the methods described for preparing these NPG films require complex starting materials such as alloys, multiple synthesis steps, lengthy preparation procedures or a combination of these factors. Here we present an approach that circumvents these difficulties, enabling for a rapid and controlled preparation of NPG films starting from bare Au electrodes. One approach is to prepare in a first step a Au oxide film by high voltage (HV) electrolysis in a KOH solution, which in a second step is reduced either electrochemically or in the presence of H₂O₂. The resulting NPG structures as well as their electrochemically active surface areas strongly depend on the reduction procedure, the concentration and temperature of the H₂O₂-containing KOH solution, as well as the applied voltage and temperature during the HV electrolysis. The NPG film can also be prepared directly by applying electrolysis voltages that result in anodic contact glow discharge electrolysis (aCGDE) over an extended period of time. By carefully adjusting the corresponding parameters, the surface area of the final NPG film can be specifically controlled. The structural properties of the electrodes are investigated by means of XPS, SEM and electrochemical methods.


Gold oxide


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.