Dipole Effects in the Photoelectron Angular Distributions of the Sulfur Monoxide Anion

25 July 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Photoelectron angular distributions (PADs) in SO- photodetachment using linearly polarized 355 nm (3.49 eV), 532 nm (2.33 eV), and 611 nm (2.03 eV) light were investigated via photoelectron imaging spectroscopy. The measurements at 532 and 611 nm access the X-^3-Σ^- and a-^1-Delta electronic states of SO, whereas the measurements at 355 nm also access the b-^1Σ^+ state. In aggregate, the photoelectron anisotropy parameter values follow the general trend with respect to electron kinetic energy (eKE) expected for π* orbital photodetachment. The trend is similar to O2-, but the minimum of the SO- curve is shifted to smaller eKE. This shift is attributed mainly to the exit-channel interactions of the departing electron with the dipole moment of the neutral SO core, rather than the differing shapes of the SO- and O2- molecular orbitals. Of the several ab initio models considered, two approaches yield good agreement with the experiment: one representing the departing electron as a superposition of eigenfunctions of a point dipole-field Hamiltonian, and another describing the outgoing electron in terms of Coulomb waves originating from two separated charge centers, with a partial positive charge on the sulfur and an equal negative charge on the oxygen. These fundamentally related approaches support the conclusion that electron-dipole interactions in the exit channel of SO- photodetachment play an important role in shaping the PADs. While a similar conclusion was previously reached for photodetachment from sigma orbitals of CN- (Hart, Lyle, Spellberg, Krylov, Mabbs, J. Phys. Chem. Lett., 2021, 12, 10086-10092), the present work includes the first extension of the dipole-field model to detachment from π* orbitals.


Photoelectron imaging spectroscopy
Negative ions
Dipole moment
Dyson orbitals
Photoelectron angular distributions


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.