Conformational control of ortho-phenylenes by terminal amides

22 July 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Control over the folding of oligomers, be it broad induction of a preferred helical handedness or subtle changes in the orientations of individual functional groups, is important for applications ranging from molecular recognition to long-range conformational communication. Here, we report a series of ortho-phenylene hexamers functionalized with achiral and chiral amides at their termini. NMR spectroscopy, taking advantage of F-19 labeling, allows multiple conformers to be detected for each compound. In combination with CD spectroscopy and DFT calculations, specific geometries corresponding to each conformer have been identified and quantified. General conclusions about the effect of sterics and the amide linker on conformational behavior have been drawn, revealing some similarities and key differences with previously reported imines. A model for twist sense control has been developed that is supported by computational models.


conformational analysis
NMR spectroscopy
chiral induction
F-19 labeling

Supplementary materials

Supporting information
Supplemental figures and data, experimental procedures
Supporting information - Computational geometries
Cartesian coordinates for optimized geometries

Supplementary weblinks


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.