The Potential Role of Addition Coupled Electron Transfer (ACET) in Single Atom Catalysis: The Hydrogen Transfer from Metalloporphyrin to Imine is an ACET

12 July 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The formal hydrogen transfer from single atom catalyst to unsaturated compounds is of great interest in the catalysis research. With the hydrogen transfer from metalloporphyrin hydride (MPcH, M = Fe, Co) to imines as an example, we have shown that this reaction is an addition coupled electron transfer (ACET) reaction instead of a hydride transfer, by combining density functional theory (DFT), multireference calculations, intrinsic reaction coordinate analysis and substituent effect study. The ACET mechanism is universe in both low-polar solvent (dichloromethane) and high-polar protic solvent (2-propanal). The barrier versus Hammett substituent constant relationship under dichloromethane solvation features a volcano-like shape, in which both electron-withdrawing and electron-donating groups accelerates the reaction. While the structure-reactivity relationship cannot be rationalized by either substituent constant σp or the spin delocalization constant σJJ, it can be successfully explained by a theoretical model of ACET proposed by us for the first time in this work. This work shows that ACET may be ubiquitous in single atom catalyzed addition reactions.

Keywords

single atom catalysis
Addition Coupled Electron Transfer (ACET)
Hydrogen Atom Transfer
Metalloporphyrin
Catalysis

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.