Scavengome of an Antioxidant

11 July 2022, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The term ‘scavengome’ refers to the chemical space of all the metabolites that may be formed from an antioxidant upon scavenging reactive oxygen or nitrogen species (ROS/RNS). This chemical space is very rich in structures representing an increased chemical complexity as compared to the parent antioxidant: a wide range of unusual heterocyclic structures, new C-C bonds, etc. may be formed. Further, in a biological environment, this increased chemical complexity is directly translated from the localized conditions of oxidative stress that determines the amounts and types of ROS/RNS present. Biomimetic oxidative chemistry provides an excellent tool to model chemical reactions between antioxidants and ROS/RNS. In this chapter, we provide an overview on the known metabolites obtained by biomimetic oxidation of a few selected natural antioxidants, i.e., a stilbene (resveratrol), a pair of hydroxycinnamates (caffeic acid and methyl caffeate), and a flavonol (quercetin), and discuss the drug discovery perspectives of the related chemical space.

Keywords

Scavengome
antioxidant-based drug discovery
chemical space
oxidative metabolism
diversity-oriented synthesis
biomimetic oxidation
resveratrol
caffeic acid
methyl caffeate
quercetin

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.