Rationalising the difference in crystallisability of two Sulflowers using efficient in silico methods.

08 July 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The molecular structures of the first and second generation Sulflowers, Sulflower and Persulfurated Coronene (PSC), are remarkably similar: carbon ring structures decorated with sulfur atoms, without any additional moiety. However, their crystallisability is starkly different, with Sulfower easily forming well-characterised crystals, but with PSC only resulting in amorphous forms, despite extensive experimental efforts. Here this phenomenon is investigated using Crystal Structure Prediction (CSP) methods to generate plausible structures on the lattice energy surface for both systems, followed by molecular dynamics and Well-Tempered metadynamics to investigate their persistence at finite temperature. Coherently with experimental observations, the Sulfower experimental form emerges as exceptionally stable under ambient conditions and persists in all dynamic simulations. However, all PSC structures transition to amorphous phases when subjected to a small amount of work. While CSP methods are commonly used to identify a shortlist of structures that a molecule could plausibly crystallise into, this work demonstrates, for the first time, the ability of in silico methods to predict whether a molecule can crystallise into any structure at all.


Persulfurated Coronene
Molecular Dynamics
Enhanced Sampling


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.