Abstract
Lanthanide luminescence fascinates with complicated electronic structure and ’forbidden’ transitions. By studying the photophysics of lanthanide(III) solvates, a close to ideal average coordination geometry can be used to map both electronic energy levels and transition probabilities. Some lanthanide(III) ions are simpler to study than others, and samarium(III) belongs to the more difficult ones. The 4f5 system has numerous absorption and emission lines in the visible and infrared part of the spectrum, and in this work the energy levels giving rise to these transitions were mapped, the transition probability between them was calculated, and it was shown that the electronic structure of the samarium(III) solvates in DMSO, MeOH and water are different.
Supplementary materials
Title
Supporting Information
Description
Additional data and methodology
Actions