Tuning Ionic Screening to Accelerate Electrochemical CO2 Reduction in Ionic Liquid Electrolytes

07 July 2022, Version 3
This content is a preprint and has not undergone peer review at the time of posting.


Electric double layer formation often governs the rate and selectivity of CO2 electrochemical reduction. Ionic correlations critically define double layer properties that are essential to electrocatalytic performance, including capacitance and localization of potential gradients. However, the influence of ionic correlations on CO2 electro-reduction remains unexplored. Here, we use electrochemical conversion of CO2 to CO in ionic liquid-based electrolytes to investigate how the emergence of ionic correlations with increasing ion concentration influences reaction rates and selectivity. Remarkably, we find substantial acceleration of potential-dependent CO2 reduction rates and notable enhancement of faradaic efficiency to CO at intermediate concentrations of 0.9 M ionic liquid in acetonitrile, a concentration regime that has not been studied previously. We find that onset potentials for CO2 reduction remain relatively unchanged at -2.01 V vs. Ag/Ag+ from 0.025 M up to 1.1 M and increase to -2.04 V vs. Ag/Ag+ in the limit of neat ionic liquids. Hence, the acceleration of CO2 reduction we observe originates from the amplification of potential-dependent driving forces, as opposed to changes in onset potential. Importantly, our findings are general across co-catalytic and non-catalytic ions. We propose that concentrations of maximum reactivity correspond to conditions where electric double layers exhibit the strongest screening, which would localize electric fields to stabilize polar intermediates. Our study demonstrates that tuning bulk electrostatic screening lengths via modulation of ionic clustering provides a general approach to accelerating both inner sphere and outer sphere electrochemical reactions.


CO2 reduction
ionic liquid

Supplementary materials

Supplementary Information
Contains additional data sets and relevant images to supplement the main text.


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.