Controlling superselectivity of multivalent interactions with cofactors and competitors

04 July 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Moieties that compete with multivalent interactions or act as cofactors are common in living systems, but their effect on multivalent binding remains poorly understood. We derive a theoretical model that shows how the superselectivity of multivalent interactions is modulated by the presence of cofactors or competitors. We find that the role of these participating moieties can be fully captured by a simple rescaling of the affinity constant of the individual ligand-receptor bonds. Theoretical predictions are supported by experimental data of the membrane repair protein annexin A5 binding to anionic lipid membranes in the presence of Ca2+ cofactors, and of the extracellular matrix polysaccharide hyaluronan (HA) binding to CD44 cell surface receptors in the presence of HA oligosaccharide competitors. The obtained findings should facilitate understanding of multivalent recognition in biological systems and open new routes for fine-tuning the selectivity of multivalent nanoprobes in medicinal chemistry.

Keywords

superselectivity
multivalent interactions
annexin
hyaluronan

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.