Thermal Enhancement of Product Conductivity Permits Deep Discharge in Solid State Li-O2 Batteries

04 July 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Li-O2 batteries are mainly limited by the poor conductivity of their discharge products as well as parasitic reactions with carbon-containing electrodes and electrolytes. Here, Li-O2 cells utilizing inorganic solid state electrolytes are investigated as a means to operate at elevated temperature, thereby increasing the conductivity of discharge products. Growth of dense, conductive LixOy products further removes the need for high surface area support structures commonly made of carbon. Patterned Au electrodes, evaporated onto Li7La3Zr2O12 (LLZO) solid electrolyte, are used to create a triple phase boundary for the nucleation of discharge product, with growth outward into the cell headspace with gaseous O2. Through capacity measurements and imaging, discharge product growths are estimated to reach a critical dimension of approximately 10 microns, far exceeding what would be possible for a conformal film based on its room temperature electronic conductivity. Raman spectroscopy and electrochemical mass spectrometry (EC-MS) are used to characterize the discharge chemistry and reveal a mixed lithium oxide character, with evidence of trace lithium hydroxides and initial carbonate contamination. These results showcase that thermal enhancement of Li-O2 batteries could be a viable strategy to increase capacity when paired with solid electrolytes.

Keywords

solid state battery
lithium ion battery
solid interface
solid electrolyte
lithium-oxygen
lithium-air
electrochemical mass spectrometry

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting Information contains: cyclic voltammetry under argon and oxygen at variable cycle age, cycling data for cells at 100°C, table of reference Raman peak assignments, and full EIS fitting data and methodology description.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.