Expedient Synthesis of a Library of Heparan Sulfate Like “Head to Tail” Linked Multimers for Structure and Activity Relationship Studies

01 July 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Heparan sulfate (HS) plays significant roles in various biological processes such as inflammation, cell proliferation, and bacterial and viral infection. The inherent complexity of naturally existing HS has severely hindered the thorough understanding of the relationship between their diverse structures and biological functions. While HS syntheses have advanced significantly in recent years, preparation of HS libraries remains a tremendous challenge due to the difficulties in achieving high yields in glycosylation and sulfation reactions especially with longer glycans and the need to prepare multiple compounds. A new strategy to synthesize a library of HS-like pseudo-hexasaccharides has been developed to expedite library preparation. HS disaccharides were linked in a “head-to-tail” fashion from the reducing end of a module to the non-reducing end of a neighboring module to mimic native HS. Three differentially sulfated HS disaccharides were designed and prepared from a common intermediate. Conjugation of these modules using amide chemistry bypassed the need for challenging glycosylation reactions to extend the HS backbone. Combinatorial syntheses of 27 HS-like pseudo-hexasaccharides were achieved using these three HS modules. This new class of compounds mimicked well the native HS with their binding to fibroblast growth factor 2 (FGF-2) exhibiting similar structure-activity relationship trends as HS hexasaccharides. The ease of synthesis and the ability to mimic natural HS suggest the new head-to-tail linked pseudo-hexasaccharides could be an exciting tool to facilitate the understanding of HS biology.

Keywords

heparan sulfate
library synthesis
mimetic design
structure and activity relationship

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.