QCforever: Quantum chemistry for everyone

27 June 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


To obtain observable physical or molecular properties like ionization potential and fluo- rescent wavelength with quantum chemical (QC) computation, multi-step computation manip- ulated by a human is required. Hence, automating the multi-step computational process and making it a black box that can be handled by anybody, are important for effective database con- struction and fast realistic material design through the framework of black-box optimization where machine learning algorithms are introduced as a predictor. Here, we propose a python library, QCforever, to automate the computation of some molecular properties and chemical phenomena induced by molecules. This tool just requires a molecule file for providing its ob- servable properties, automating the computation process of molecular properties (for ionization potential, fluorescence, etc) and output analysis for providing their multi-values for evaluating a molecule. Incorporating the tool in black-box optimization, we can explore molecules that have properties we desired within the limitation of QC.


absorption wavelength
ionization potential
electronic affinity
density functional theory

Supplementary materials

Supporting Information
SMILES string list of 100 molecules

Supplementary weblinks


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.