Conformal efficiency as a metric for comparative model assessment befitting federated learning

22 June 2022, Version 1


As training volume increases predictive model quality, leveraging existing external data sources holds the promise of time- and cost-efficiency. In a drug discovery setting, pharmaceutical companies all own substantial but confidential datasets. The MELLODDY project develops a privacy-preserving federated machine learning solution and deploys it at an unprecedented scale (more than 100,000 tasks across ten major pharmaceutical companies), while ensuring the security and privacy of each partner’s sensitive data. Each partner builds models that benefit from a shared representation, for their own private assays. Established predictive performance metrics such as AUC ROC or AUC PR are constrained to unseen labelled chemical space. However, they cannot gauge performance gains in unlabelled chemical space. Federated learning indirectly extends labelled space, but in a privacy-preserving context, a partner cannot use this label extension for performance assessment. Metrics that estimate uncertainty on a prediction can be calculated even where no label is known. Practically, the chemical space covered with predictions of sufficient confidence, reflects the applicability domain of a model. After establishing a link to established performance metrics, we propose the efficiency from the conformal prediction framework (‘conformal efficiency’) as a proxy to the applicability domain size. A documented extension of the applicability domain would qualify as a tangible benefit from federated learning. In interim assessments, MELLODDY partners report a median increase in conformal efficiency of the federated over the single-partner model of 5.5% (with increases up to 9.7%). Subject to distributional conditions, that efficiency increase can be directly interpreted as the expected increase in conformal i.e. high confidence predictions. In conclusion, we present the first evidence that privacy-preserving federated machine learning across massive drug-discovery datasets from ten pharma partners indeed extends the applicability domain of property prediction models.


small molecule drug discovery
multitask learning
federated learning
applicability domain
conformal predictor

Supplementary materials

Complementary figures and details
Complementary figures on several analyses. Details on the hyperparameter search.

Supplementary weblinks


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.