Abstract
Stable catalysts are essential to address energy and environmental challenges, especially in harsh environment applications (high temperature, oxidizing atmosphere, steam). In such conditions, supported metal catalysts deactivate due to sintering – a process where initially small nanoparticles grow into larger ones with reduced active surface area. Strategies to stabilize them lead to decreased performance. Here, we report stable catalysts prepared through the encapsulation of platinum particles inside an alumina framework. These catalysts do not sinter at 800 °C in the presence of oxygen and steam, conditions in which conventional catalysts sinter to large extents, while showing similar reaction rates. Extending this approach to Pd/Pt bimetallic catalysts leads to maintained small particle size at temperatures as high as 1,100 °C in air and steam. This strategy can be broadly applied to other metal and metal oxides for applications where sintering is a major cause of materials deactivation.
Supplementary materials
Title
Supporting Information
Description
Supporting Information
Actions