Emergent sequence biasing in step-growth copolymerization: influence of non-bonded interactions and comonomer reactivities

09 June 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The phase behavior and material properties of copolymers are intrinsically dependent on their primary comonomer sequences. Achieving precise control over monomer sequence in synthetic copolymerizations is challenging, as sequence determination is influenced not only by the reaction conditions and the properties of the reactants, but also by the statistical nature of the copolymerization process itself. Mayo-Lewis reactivity ratios are often used to predict copolymer composition and sequence and are based on ratios of static reactivity constants. However, prior results have demonstrated that in a generic, solution-based step-growth A,B-copolymerization, relatively weak non-bonded attractions between certain monomer pairs induce emergent microphase separations. Such polymerization driven separations lead to deviations from standard kinetics, due to the emergent heterogeneities in reactant concentrations, which can also cause significant shifts in the resulting copolymer sequences. Previously, these effects were observed in systems where the activation energies were equal for all reaction pathways, that is, between all monomer pair combinations. In this work, we explore the combined effects on copolymerization kinetics of differences in both activation energies and non-bonded attractions between monomers and examine the sequences produced within this same step-growth copolymerization model. Our results indicate that altering activation energies influences the kinetics and sequences in a manner that also depends upon the non-bonded attractions, showing that these effects may work in concert or in opposition to one another to bias the sequences formed. Non-standard kinetic behaviors and long-range sequence biasing are observed under certain conditions, and the extent of each clearly shifts as the reaction proceeds. These findings provide insight into the complex interplay between sequence and nascent oligomer phase behavior, highlighting the potential for exploiting emergent phase properties in the informed design of advanced sequence-biased materials.


Sequence control
Copolymer sequence

Supplementary materials

Supporting Information for "Emergent sequence biasing in step-growth copolymerization: influence of non-bonded interactions and comonomer reactivities"
Additional simulation details regarding attractive interactions, activation energies, calculations used in data analysis, and supplementary results.


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.