Disassembly Mechanisms and Energetics of Polymetallic Rings and Rotaxanes with Ion Mobility Mass Spectrometry

02 June 2022, Version 1


Understanding the fundamental reactivity of polymetallic complexes is challenging due to the complexity of their structures with many possible bond breaking and forming processes. Here we apply ion mobility mass spectrometry (IM-MS) coupled with density functional theory (DFT) to investigate the disassembly mechanisms and energetics of a family of heterometallic rings and rotaxanes with the general formula [NH2RR’][Cr7MF8(O2CtBu)16] with M = MnII, FeII, CoII, NiII, CuII, ZnII, CdII. Our results show that their stability can be tuned both by altering the d-metal composition in the macrocycle and by the end groups of the secondary ammonium cation [NH2RR’]+. Ion mobility probes the conformational landscape of the disassembly process from intact complex to structurally distinct isobaric fragments, providing unique insights to how a given divalent metal tunes the structural dynamics.


supramolecular chemistry
ion mobility mass spectrometry
d-metal complexes

Supplementary materials

Supporting information
Information to support the main text


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.