Low-lying excited states of natural carotenoids viewed by ab initio methods

01 June 2022, Version 2
This content is a preprint and has not undergone peer review at the time of posting.


Low-lying excited states of carotenoids (the optically dark 2Ag- and bright 1Bu+) are deeply involved in energy transfer processes in photosynthetic antennas such as light-harvesting and non-photochemical quenching. Though any ab initio modeling of these phenomena has to rely on precise energies of the carotenoid electronic states, their accurate evaluation remains a challenging problem due to a different nature of the states of interest. The paper aims to study how accurate are the excitation energies of the low-lying excited states of certain open- and closed-chain carotenoids obtained by a state-of-the-art multireference approach for electronic structure calculation. Here, DMRGSCF and a perturbative approach based on DSRG-MRPT2 were used for treatment of static and dynamic correlation, respectively. Nuclear geometries of the electronic states were optimized with DFT-based approaches. It was demonstrated that spin-flip TD-DFT can replace multiconfigurational methods for the geometry optimization of the 2Ag- state, but not for the calculation of the excitation energy. Adiabatic excitation energies to the 1Bu+ state were shown to be within a margin of 1000 cm-1 with an appropriate flow-parameter value. Adiabatic excitation energies to the 2Ag- state for the open-chain carotenoids lie within a range of experimental values (taking into account the broad range of experimental estimates); for the closed-chain ones the error does not exceed 2000 cm-1. Ab initio stationary (1Ag- → 1Bu+) and transient (2Ag- → 1Bu+) absorption spectra were modeled for violaxanthin and lycopene, and they show a good agreement with the experimental ones both in terms of vibronic structure and transition energies.


excited state
spin-flip TD-DFT
vibronic structure

Supplementary materials

Supplementary Information
The supplementary includes absolute energies and structures


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.