Abstract
This work presents the use of electroosmotic flow generation in porous media in combination with a hydrophobic air gap to create a controllable valve capable of operating in either finite dosing or continuous flow mode, enabling the implementation of multi-step biochemical assays on paper-based devices. A hierarchical superhydrophobic surface placed between two paper pads creates an air gap, keeping the valve nominally closed. To open the valve, a pair of electrodes are activated to generate electroosmotic pressure that overcomes the barrier. The study provides an experimentally validated model describing the governing parameters, and a detailed investigation of the closed valve stability. From these, a straightforward design for a compact and fully automated device is derived. The design is based on paper pads placed on printed circuit boards (PCB), equipped with heating and actuation electrodes and additional power and logic capabilities. The device is applied to the detection of SARS-CoV-2 sequences directly from raw saliva samples, using loop-mediated isothermal amplification (LAMP) requiring sample lysis followed by enzymatic deactivation and sample distribution to multiple amplification pads. Since PCB costs scale favorably with mass production, we believe that this approach could lead to low-cost diagnostic devices with the sensitivity of amplification methods.
Supplementary materials
Title
Automated Device for Multi-Stage Paper-Based Assays Enabled by an Electroosmotic Pumping Valve
Description
Supporting Information
Actions