The molecular structure and phase equilibria of molten fluoride salt with and without dissolved cesium: FLiNaK-CsF (5 mol%)

30 May 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


We demonstrate effects of Cs ions on the melting transition and molecular structure of molten FLiNaK (a eutectic mixture of LiF-NaF-KF). FLiNaK is a commonly studied multi-component model system, which represents the physical and chemical behavior of fluoride salts for nuclear energy applications. Dissolution of nuclear fuels leads to the formation of fission products directly in the molten salt. Cs is one of the most important fission products, due to its relative abundance, long half life, and potential environmental and health effects. Here, we determine the molecular structure and phase equilibria of dissolved Cs in FLiNaK by a combination of X-ray diffraction, X-ray total scattering, ab initio molecular dynamics calculations, and computational thermodynamics. Although Cs ions have a relatively large size, we did not find significant evidence that they disrupt the existing molecular structure of the liquid. We found good agreement between our simulated and measured structure factors, and calculated that the coordination number of Cs is close to 10. X-ray diffraction in combination with computational thermodynamics demonstrates that upon freezing Cs ions are captured into a CsLiF2 compound, with a lower melting temperature than the FLiNaK mixture and much higher than that predicted for CsLiF2 by computational thermodynamics. We also demonstrated a novel sample environment that we developed to X-ray measurements of molten fluoride or fuel salts.


molten salt
total diffraction
molecular dynamic simulations


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.