Selective Naked-eyes Chemosensing of Cu2+ ions using Chitosan-CdS Quantum Dots Biohybrid

19 May 2022, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Cadmium sulfide (CdS) quantum dots (QDs) were homogeneously embedded into chitosan (CTS), denoted as CdS/CTS, via an in-situ solvothermal method. The intact structure of the synthesized materials was preserved via separating the materials using freeze-drying. The materials were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), high-resolution TEM (HR-TEM), scanning TEM (STEM), dispersive energy X-ray (EDX) for elemental analysis and mapping, Fourier transform infrared (FT-IR), nitrogen adsorp-tion-desorption isotherms, thermogravimetric analysis, UV-Vis spectroscopy, and diffuse reflectance spectroscopy (DRS). The synthesis procedure offered CdS QDs with 1-7 nm (average particle size of 3.2 nm). The functional groups of CTS modulate the in-situ growth of CdS QDs and prevent the agglomeration of CdS QDs, offering homogenous distribution inside CTS. CdS/CTS QDs can also be used for naked-eye detection of heavy metals with high selectivity toward copper (Cu2+) ions. The mechanism of interactions between Cu2+ ions and CdS/CTS QDs was further studied

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.